Параметры камер мобильных телефонов. Основные характеристики, проблемы и примеры дефектов на снимках. Как выбрать смартфон с хорошей камерой 

СмартПульс - держите руку на пульсе высоких технологий! То, что доктор прописал!
Характеристики, тесты, обзоры мобильных устройств, компьютеров, комплектующих, радиолюбительских конструкций и компонентов

 


  Главная - Информация к размышлению (статьи) - Съемка камерой мобильного телефона (смартфона). Основные параметры, характеристики, проблемы. Как выбрать смартфон с хорошей камерой?



Новости

Статьи

Обзоры:

DIY электроника (Сделай сам!)

SSD и HDD

 Смартфоны, планшеты и ноутбуки

Аудио

Электронные книги

Фото- и видеокамеры

Мини-компьютеры

Внешние аккумуляторы

Электротранспорт


Обзоры РУНЕТа

 

  Статья:

  Съемка камерой мобильного телефона (смартфона). Параметры камер мобильных телефонов. Основные характеристики, проблемы и примеры дефектов на снимках. Как выбрать смартфон с хорошей камерой?

Предисловие

   Съемка на камеру мобильного телефона (смартфона) прочно вошла в нашу жизнь. Многие пользователи смартфонов считают, что "обычный" фотоаппарат им уже просто не нужен, достаточно иметь смартфон с хорошей камерой.

   Но вот вопрос - какую камеру смартфона считать "хорошей"? Или всегда ли она сможет заметить хотя бы простенькую "цифромыльницу"?

  Давайте рассмотрим этот вопрос с точки зрения характеристик камер, их особенностей, а также типичных проблем и ошибок, приводящих к потере качества фотографий и видео, снятых с "мобильника". Постараемся это сделать без излишней научной "заумности", на простом и понятном языке.

   При этом разделим параметры камер мобильных телефонов на две группы: параметры фотоматриц и параметры объективов.

 

Физические принципы цифровой фотографии

  Физические принципы цифровой фотосъемки почти не отличаются от работы фотоэлемента из школьного курса физики. Свет, падающий на чувствительную поверхность (которая является первым электродом), выбивает из неё электроны, которые достигают второго электрода. В результате между ними возникает разность потенциалов, которая считывается и отправляется на обработку. А этот фотоэлемент является ни чем иным, как элементарным пикселем датчика изображения. Эти пиксели объединены в матрицу, а их количество представляет собой то самое число мегапикселей, которое мы видим на упаковке смартфона или фотоаппарата.
   Правда, на самом деле пикселей там в три раза больше, потому что в цветной фотографии каждый пиксель образуют три датчика, чувствительных к разным цветам: красному, зеленому, синему (RGB в буржуйской терминологии).

   Итак, всё с виду хорошо и гладко. Откуда же возникают дефекты изображения?

   Объективные причины - электрические шумы в матрице и недостаток её динамического диапазона; а также погрешности объектива, формирующие на матрице неточную картинку реального мира.

   Субъективные причины - "дрожание" камеры фотографа (особенно это серьезно при слабом освещении), ошибочная фокусировка, ошибки при выборе экспокоррекции и т.п.

   В отдельных случаях дефекты изображения, возникшие вследствие реальных физических причин, усугубляются и программной обработкой, работающей временами по принципу "хотели, как лучше; а получилось...". :)

 

Параметры матриц, часть 1. Физический размер матрицы и количество мегапикселей.

  Поскольку матрица цифровой камеры - не только датчик изображения, но и источник шумов, то параметры матриц будем рассматривать в тесной увязке с их влиянием на шум.

Матрица камеры мобильного телефона (смартфона)

   Итак, первые два параметра:

   1. Размер матрицы.
   2. Количество (мега)пикселей.

   Размер матрицы определяется замысловатыми дробями вида, например, 1/2.7 (не путать с диафрагмой, имеющей немного похожее обозначение, вида F/2.7).
   В данном случае это соответствует диагонали матрицы в 6.27 мм, а размеры сторон 5.02 x 3.76 мм.
  Как это перевести размер 1/2.7 в "нормальные" единицы? Эта дробь означает, что диагональ матрицы в 2.7 раза меньше, чем диагональ матрицы в видиконе диаметром 1 дюйм. Видикон - это древний электронно-лучевой прибор, применяемый в телевизионных камерах "ламповой" эпохи. И матрица в круглом 1-дюймовом видиконе была, естественно, меньше диаметра видикона и составляла чуть больше 16 мм (т.е. не точно 16 мм, имеются "разночтения"). Эти 16 мм и есть тот "видиконовый дюйм", от которого до сих пор рассчитываются параметры цифровых фотоматриц, хотя сами видиконы можно найти только в технических музеях. :)
   Чем знаменатель дроби меньше, тем матрица крупнее и ЛУЧШЕ.

   Теперь разберем, почему чем матрица крупнее - тем она лучше.

   Шум в матрице определяется случайным (тепловым) движением электронов; а сигнал - интенсивностью светового потока, временем экспозиции (т.е. накопления заряда) и площадью светочувствительного элемента (пикселя).  Соответственно, чем выше параметры, образующие сигнал, тем будет лучше соотношение сигнал/шум при прочих равных условиях.

   Если хотя бы один из перечисленных параметров - низкий, то на изображении начинают "проступать" шумы в виде хаотично расположенных точек и пятен различной яркости и цвета. Так выглядит зашумленная фотография в условиях пониженного освещения:

Пример фотографии с сильными цифровыми шумами

  Лучше этот эффект заметен при увеличении до 100% (фрагмент см. ниже). Шумы делают менее различимым изображение сфотографированных предметов:

Пример фотографии с сильными цифровыми шумами

    Вернемся к вопросу о способах уменьшения шумов.
   С интенсивностью светового потока и площадью пикселя все понятно, а как увеличить время экспозиции, не доводя изображение до пересвечивания? Очень просто - снижая чувствительность при съемке (чувствительность выражается в единицах ISO - 50, 100, 200, 400 и т.д. до 100000). Другое дело - что палка, как известно, "о двух концах". Увеличение времени экспозиции может привести к "размазыванию" изображения из-за движения объекта или "дрожания" камеры в руках; но мы пока рассматриваем проблемы в принципе. :)

   Но размер пикселя определяется не только размером матрицы, но и количеством пикселей на матрице (грубо говоря, надо площадь матрицы разделить на число пикселей). Отсюда - следующий вывод: чем мегапикселей в матрице меньше, тем соотношение сигнал/шум лучше. Но при высоком уровне освещения даже и с мелким размером пикселя соотношение сигнал/шум будет неплохим. А при падении освещения преимущество будет за теми камерами, у которых пиксель крупнее.

   Кстати, размер пикселя (точнее, расстояния между пикселями) уже достиг своего физического предела, который составляет 1 мкм. Дальнейшее уменьшение размера пикселя теряет смысл, поскольку длина световой волны составляет от 0.39 до 0.78 мкм; и при расстоянии между пикселями менее 0.78 мкм (красный свет), соседние пиксели будут показывать просто одно и то же.

   По описанным выше причинам, потребителю надо иметь в виду, что зачастую количество мегапикселей имеет больше рекламный характер, чем реальную пользу. Практически, если в камере есть 12-13 мегапикселей, то это уже неплохо; но это - еще не гарантия, что всё будет хорошо - в дело вступит качество оптики. Если же в камере СОВРЕМЕННОГО смартфона количество мегапикселей менее 10, то, скорее всего это - дешевая камера, от которой не стоит ждать высокого качества снимков.

    В то же время, если производитель - достаточно солидный и уважаемый (SONY, Asus, Samsung и т.д.), то и большое количество мегапикселей лишним не будет. По крайней мере, при ярком освещении.

   Если есть сомнения, будет ли толк от большого числа мегапикселей, то лучше выбрать тот смартфон, у которого больше физический размер матрицы. А уменьшить количество мегапикселей на фото можно после можно уже и после съемки в графическом редакторе.

   Вот такой это противоречивый параметр - количество мегапикселей.

   Итог этой части наших исследований:

   - Чем больше физический размер матрицы, тем лучше ВСЕГДА.
  - Чем больше мегапикселей, тем тоже лучше, но только при хорошем качестве оптики и хорошем освещении в момент съемки.

   Теперь - о дополнительных параметрах, включая технологические.

 

Параметры матриц, часть 2. Чувствительность и технологические особенности

   Разберем еще такие вопросы:

   1. Чувствительность в единицах ISO.
   2. Технология с микролинзами.
   3. Технология с обратной засветкой (Back-Side Illumination, BSI).

   В старину чувствительность была физическим параметром фотопленки, который по ходу съемки никак меняться не мог.
  В цифровых камерах величина чувствительности может задаваться вручную или автоматически. При назначении той или иной чувствительности на самом деле в фотоматрице никаких изменений не происходит. Просто изменяется коэффициент аналогового усиления сигнала с фотодатчиков перед подачей его на вход аналого-цифрового преобразователя (аналогично, например, регулировке громкости в плеерах).
   Соответственно, и изменения соотношения сигнал/шум тоже не происходит, т.к. усиливаются одновременно и сигнал, и шум.

   В чем же тогда вообще смысл упоминания чувствительности в параметрах камер?

   Чем меньше нижний предел чувствительности, тем более качественные можно получить фотографии, по крайней мере, для неподвижных объектов. Механизм повышения качества прост: чем меньше чувствительность, тем больше выдержка (время накопления сигнала), и тем лучше соотношение сигнал/шум. Для хороших камер "мобильников" нижний предел обычно бывает 50 ISO.

   А чем выше верхний предел, тем больше возможностей получить хоть какое-то изображение при слабом освещении (правда, вместе со всеми полагающимися шумами). Для хороших камер мобильных устройств верхний предел обычно составляет 3200...6400 ISO. Теоретически, ничто не мешает установить верхний предел и сколь угодно большим, но изображения в этом случае уже не будет - будут лишь шумы со смутными контурами предметов.

   Технологические усовершенствования (микролинзы и матрицы "с обратной засветкой", BSI) появились как борьба с одним из принципиальных недостатков фотоматриц: светочувствительные пиксели не могли занимать всю поверхность матрицы; поскольку, кроме них, на поверхности матрицы располагаются транзисторы и соединительные проводники.

   Для устранения этих недостатков внедрили две технологических новинки. Сначала перед пикселями стали располагать собирающие свет микролинзы; а затем светочувствительные пиксели стали располагать не на той стороне подложки, где находятся проводники и транзисторы, а на обратной. В результате схематично современная фотоматрица выглядит "в разрезе" примерно так:

Матрица камеры смартфона с микролинзами и технологией с обратной засветкой (Back-Side Illumination, BSI).                     

(изображение взято из чешского раздела Википедии)

       Итог второй части наших исследований:

   - Пределы возможных значений чувствительности не принципиальны, но желательно, чтобы они были хотя бы в диапазоне 80...3200 ISO, либо в более широком в ОБЕ стороны (и вниз, и вверх).

   - Технологические особенности (микролинзы, матрица с обратной засветкой) сейчас используются практически для всех камер мобильных устройств, начиная со среднего ценового диапазона, и рассматривать их как преимущество смысла нет. Для устройств на "вторичном рынке" использование этих технологических особенностей может быть весомым аргументом "за".

   Остальные параметры матриц в этой статье рассматривать не будем, так их очень много (десятки!), а производителями мобильных устройств они все равно не упоминаются.

 

Типовые дефекты снимков из-за проблем оптической системы

  Хотя снаружи в камерах смартфонов и планшетов видно только одну очень маленькую линзу, на самом деле это - только вершина айсберга под названием "объектив". Объектив устроен очень сложно и имеет несколько линз и несколько диафрагм (подробнее - в статье "Устройство камеры смартфона"). Все эти "навороты" нужны для борьбы с геометрическими и цветовыми искажениями, а также для обеспечения равномерности фокусировки по полю матрицы.

   Рассмотрим типовые примеры, что бывает, когда оптика камеры смартфона несовершенна.

   Случай №1. Неравномерность цвета ("цветовое виньетирование"):

Пример неравномерности цвета ("цветовое виньетирование") при съемке на камеру смартфона
(кликнуть для увеличения)

  Обратите внимание, что на фотографии центр снимка имеет явственный розовый оттенок, а края - зеленый. Но это - не единственная проблема этого снимка. Переходим к случаю №2.

   Случай №2. Зоны нерезкости на снимке.

   Если увеличить приведенный выше снимок до 100%,  то можно заметить, что в правом верхнем углу "картинка" гораздо более "размыта", чем на всех остальных частях кадра. Посмотрим, для сравнения, на увеличенные до 100% фрагменты из левого верхнего угла и из правого верхнего:

Нормальная резкость  Пример "зоны нерезкости" при съемке на камеру смартфона

  Данная проблема является следствием элементарной геометрической "кривизны" в каком-то из элементов оптической системы. Причем дислокация зоны нерезкости и вообще её наличие могут меняться от экземпляра к экземпляру телефона одной и той же модели.

   Но следует иметь в виду, что сам по себе факт снижения резкости по краям снимка еще не является дефектом. Такое явление свойственно почти всем камерам "мобильников", кроме самых дорогих. Дефектом является аномальное ухудшение резкости в какой-либо отдельной области снимка.

   Два только что описанных дефекта никак не следуют из технических параметров камеры смартфона. Их можно обнаружить, только внимательно просматривая тестовые фотографии в обзорах устройств.

 

Параметры оптической системы

  А теперь разберем те параметры оптической системы, которые производители смартфонов обычно указывают в технических характеристиках устройств.

  Чаще всего таких параметров - немного, всего два: относительная диафрагма (светосила) и количество элементов оптической системы. Но бывает, что к ним еще добавляют фокусное расстояние объектива, угол зрения, величину оптического и электронного зума, и, иногда, еще какую-нибудь второстепенную "мелочевку".

  Начнем с количества элементов оптической системы. Количество элементов, теоретически, чем больше - тем лучше; ибо каждый элемент должен как-то улучшать изображение. При этом надо помнить, что количество элементов не означает количество линз; в число элементов входят и диафрагмы. Но абсолютно прямой связи между числом элементов и качеством изображения всё-таки нет.

   Насчет же первого из упомянутых параметров - относительной диафрагмы - поговорим поподробнее.

   Относительная диафрагма обозначается буквой F и числом, получается выражение вида, например, F/1.8 . Это число обозначает, во сколько раз эффективное значение величины отверстия для прохождения света МЕНЬШЕ "идеального". Под "идеальным" понимается освещенность мишени объективом без потерь, диаметр которого равен фокусному расстоянию.

  Поскольку в объективе всегда присутствуют потери, а также расстояние от передней линзы не совпадает с фокусным расстоянием объектива в целом, то значение F всегда больше 1. Причем, поскольку количество пропускаемого света пропорционально не линейному размеру, а площади отверстия, то оно уменьшается пропорционально КВАДРАТУ числа F/.

   Принципиальное отличие диафрагмы в камерах мобильных устройств от "настоящих" фотоаппаратов состоит в том, что в мобильных устройствах она - не регулируется (т.е. фиксированная величина). А в настоящих фотоаппаратах она может физически изменяться за счет сжатия или расширения образующих её лепестков.

  С точки зрения качества фотоснимков, чем число в знаменателе выражения F/x.x у камеры "мобильника" меньше, тем лучше; поскольку это означает бОльший световой поток на матрице и лучшее соотношение сигнал/шум.

  У лучших камер мобильных устройств относительная диафрагма составляет от F/2.0 до F/1.7, у остальных - от F/2.2 и выше. Меньше знаменатель - лучше.

  Но, если камера имеет оптический зум, то величина F/ может меняться даже несмотря на то, что диафрагма в камерах мобильных устройств - фиксированная. Это происходит из-за того, что положение  линз при увеличении зума меняется таким образом, что оптический центр объектива удаляется от матрицы, и её освещенность падает. Соответственно, изменяется и число F/ (относительная диафрагма).

   Остальные параметры - менее значительны, да и не всегда упоминаются производителями.

   Фокусное расстояние объектива само по себе ни о чем не говорит, но совместно с размером матрицы оно определяет угол зрения. Для большинства тыловых (основных) камер угол зрения (поле зрения) составляет 65-75 градусов, для фронтальных камер - до 90 градусов. При выборе "мобильника" на этот параметр не надо обращать внимания. Правда, если Вам, например, нужна непременно широкоугольная камера, то есть смысл обратить внимание на некоторые модели смартфонов с несколькими камерами, в число которых входит и широкоугольная типа "рыбий глаз".

 

Проблемы программной обработки фотоснимков

  Перед тем, как мы увидим фотографию, смартфон (планшет) её основательно обрабатывает программно на уровне прошивки, приводя к "удобоваримому" виду. Подавляющее большинство этих операций - линейные; то есть, представляют собой необходимую корректировку яркости, контрастности, цветности, и интерполяцию, если разрешение снимка установлено пользователем не совпадающим с разрешением матрицы.

   Как выглядят необработанные фотографии в том виде, в каком они приходят с матрицы в смартфон, можно на тех смартфонах, где имеется возможность сохранения фото в RAW (это и есть необработанный формат):

Храм Николая Чудотворца в пос. Дружба (Мытищи), формат RAW, сконвертированный в JPG, тест камеры asus zenfone 3 zoom
(исходный файл в RAW (DNG) можно скачать здесь, 23 Мб)

   Эта фотография имеет бледные цвета, неравномерную яркость (кажется, что небо в центре вокруг храма светлее, но это  - не чудо, а дефект), и еще кое-какие недостатки. Смартфон это выправляет, обработанная смартфоном фотография выглядит так:

Храм Николая Чудотворца в пос. Дружба (Мытищи), тест камеры asus zenfone 3 zoom

   По поводу неравномерной яркости изображения надо еще добавить, что она отражается и на уровне шумов. Яркость изображения снижается примерно в 1.6 раза к краям, и в 2.2 раза - к углам изображения относительно центра. Отсюда следует, что чем дальше от центра - тем уровень шумов на фотографии будет выше, а четкость - ниже. Соответственно, эти явления надо считать в определенной мере естественными.
   Правда, к ухудшению четкости может свою лепту добавить и кривизна оптики. В этом случае расположение мест ухудшения четкости будет несимметричным, см. предыдущий пример фотографии.

   Но, кроме линейных операций при обработке таких фото, есть и две нелинейные операции, когда смартфон (планшет) сами дорисовывают на снимке то, чего на нем не было (или убирают то, что было). Эти операции - "шарпинг" и "шумодав".

   Начнем с "шарпинга" (дословно с английского - "обострение").
   "Шарпинг" - это операция подчеркивания контуров предметов на снимке.
   Алгоритм её работы, не вдаваясь в математические подробности, таков: обнаружить контуры предметов, и сделать их более четкими. А для этого - светлую сторону контура сделать светлее, а темную - темнее.

   Вот пример "правильной" работы шарпинга:

Шарпинг - подчеркивание контуров предметов на фото снимках

  Посмотрите на фрагмент снимка в масштабе 100%:

Шарпинг - подчеркивание контуров предметов на фото снимках

   Если ОЧЕНЬ хорошо присмотреться, то можно заметить вокруг темной части купола церкви светлую полоску на фоне неба. Толщина этой полоски - всего несколько пикселей. Это и есть "правильная" работа шарпинга - когда она почти не заметна.

   А теперь посмотрим пример "неправильной" работы шарпинга:

Пример неправильной работы шарпинга

   Посмотрите на фрагмент из левого верхнего угла снимка в масштабе 100%:

  Небо и некоторые части здания усыпаны точечками, завитушками и полосочками. Их создал шарпинг, пытаясь подчеркнуть контуры несуществующих предметов; за которые он принял, скорее всего шумы и мелкие неравномерности фона.
   В результате картинка получилась с сильными искажениями.

   Аналогичные дефекты могут сопровождать и работу "шумодава".
   Система шумоподавления должна (по идее) убирать мелкие крапинки, возникающие на равномерном фоне из-за шумов; особенно - в условиях пониженного освещения.
   Но на практике часто этот алгоритм работает туповато и начинает "размазывать" мелкие детали на вполне нормальном снимке с хорошим освещением.

   Посмотрим на пример ошибочной работы "шумодава":

Пример ошибочной работы шумодава (системы подавления шумов на фотографии)

   Посмотрите на фрагмент центральной части снимка в масштабе 100%:

   На этом фрагменте отлично видно, что высококонтрастные части снимка получились хорошо; а те места, где находится повышенная концентрация небольших малоконтрастных деталей (веток деревьев), "размазаны" системой шумоподавления, поскольку ошибочно приняты за шум.

   Также к ошибкам в программной обработке можно отнести и некоторые дефекты в цветопередаче.

   Вариантов в ошибках цветопередачи может быть два: ошибочный цветовой баланс фотографии и низкая насыщенность цветов.

   Так выглядит фотография со смещением цветового тона в сторону "тёплых" цветов:

Пример фотографии камерой смартфона с ошибочным цветовым балансом (тёплые цвета)

   Дефект цветового баланса признаётся таковым только в том случае, если он проявляется на фотографиях систематически. Если же он появляется на фото только иногда, то это - случайное отклонение, вызванное, как правило, специфическими условиями освещения в момент съёмки; и в "зачёт" как дефект не идёт.

   Второй дефект программной обработки - низкая цветовая насыщенность - выглядит на фото так:

Пример фотографии со слабой цветовой насыщенностью (г. Дмитров, центральная площадь)

   Сначала даже кажется, что эта фотография - чёрно-белая. Но приглядевшись, потом замечаешь, что трава - чуть-чуть зелёная. :)

   Справедливости ради надо сказать, что последние два дефекта (цветового баланса и цветовой насыщенности) встречаются очень редко.

   Дефекты в программной обработке никак не следуют из технических параметров камеры; их можно обнаружить, только просматривая тестовые фотографии в обзорах.

 

Как выбрать смартфон с хорошей камерой?

  Итак, разобрав отдельные аспекты теории и практики, пора перейти к полезному применению полученных знаний.

  Каков же алгоритм поиска смартфона с хорошей камерой?

  Порядок действий будет примерно таким.

   1. Выбрать для детального анализа несколько смартфонов, у которых есть положительная репутация по части камер; или же производители сами заявили о таковой (иногда им можно верить :) ). Скорее всего, это будут смартфоны не ниже среднего ценового диапазона и с разрешением основной камеры строго выше 10 Мпикс.

   2. Попытаться найти информацию о том, какой тип камеры (сенсора) установлен в смартфоне (смартфонах). Обычно эта информация публикуется на официальных сайтах производителей смартфонов. Если там не удалось найти такую информацию, можно попытаться найти её на сайте kimovil.com (найдя там характеристики заинтересовавшего смартфона).
   Определить тип камеры в смартфоне (планшете) "постфактум" (после приобретения) можно с помощью утилиты "Device Info HW", загрузив её на устройство из магазина приложений Play Market (для устройств на ОС Android); подробнее - в следующей главе.

   3. Далее по типу камеры (сенсора) найти её технические характеристики. Это можно сделать как через поисковики в интернете, так и на официальных сайтах и в англоязычной Википедии. Вот несколько полезных ссылок для сенсоров наиболее известных производителей: SONY (Википедия), SONY (сайт производителя), OmniVision (сайт производителя), Samsung (сайт производителя), Samsung (Википедия). Список других производителей (в т.ч. китайских) - здесь.

   4. В найденных технических параметрах камеры (сенсора) в первую очередь следует обратить внимание на физический размер матрицы. При равенстве примененных технологий чем размер матрицы больше, тем лучше получается изображение как по детализации, так и по уровню шумов.
   На число мегапикселей обращать внимание следует во вторую очередь, это менее критичный параметр. Большее количество мегапикселей позволяет получить снимки с лучшей детализацией при хорошем освещении, но с большими шумами при пониженном освещении.
   Следует также иметь в виду при этом, что в графических редакторах из изображения с большим количеством пикселей всегда можно получить изображение с меньшим (с попутным уменьшением уровня шумов), а обратная операция приводит только к потере резкости и размытию контуров.

   5. Найти обзоры выбранного смартфона (смартфонов) с примерами полноразмерных фотографий (без сжатия размера). Далее желательно проанализировать те из них, в которых содержится максимальное число мелких деталей. Следует обратить внимание на типовые дефекты, перечисленные выше в статье: цветовое виньетирование, наличие областей нерезкости, чрезмерная работа шарпинга и/или шумодава. Если уровень этих дефектов велик, то отбрасываем данный смартфон из рассмотрения. Возвращаемся к пункту 1. :)

   6. Предпоследний пункт, "факультативный" (не обязательный). Рассмотреть возможность приобретения смартфона со сдвоенной камерой. Предназначения сдвоенной камеры могут быть различные.
   Если вторая камера - черно-белая, то это позволяет улучшить соотношение сигнал/шум для съемок при пониженном освещении или же сделать качественные черно-белые (монохромные) фотографии.
   Также вторая камера может быть и цветной, но с другим разрешением и/или углом зрения. Такие камеры используются обычно используются для определения переднего и заднего плана и создания "эффекта боке" (размытия заднего плана).
   Еще один вариант - когда вторая камера имеет большее фокусное расстояние, чем первая. В этом случае она дает оптическое увеличение объектов и используется для создания оптического зума.
   Есть ещё и смартфоны с эффектом, обратным предыдущему, т.е. когда вторая камера имеет меньшее фокусное расстояние и делает снимки в стиле "рыбий глаз".
   И, наконец, последний вариант - когда вторая камера установлена "для красоты" и полезности в виде улучшения качества снимков или создания творческих эффектов не приносит. Этим грешат, как обычно, смартфоны дешевых китайских производителей.

      7. И последний пункт, тоже факультативный. Изучить по обзорам наличие и работу системы стабилизации изображения: эта система поможет уменьшить "субъективные" факторы ухудшения качества снимков, в первую очередь из-за дрожания камеры.
 

Как определить, какая камера установлена в Вашем смартфоне (планшете)?

    Для смартфонов на системе Android существует отличная утилита, показывающая тип установленных камер (точнее - их сенсоров). Она называется "Device Info HW" и устанавливается легко и непринужденно из магазина приложений Play Market (бесплатно). Утилита считывает из смартфона (планшета) конфигурационную информацию и представляет её в удобочитаемом виде.

   Раздел "Камера" в этом приложении выглядит так:

Раздел "Камера" из диагностического приложения для Android "Device Info HW"
(кликнуть для увеличения)

    Верхняя часть таблицы показывает реальные (аппаратные) параметры камер, а нижняя часть - программные (интерполированные). От более высоких интерполированных параметров полезности нет, так как пока что такие алгоритмы детализации добавить не могут (хотя в Google и работают над этой проблемой - как "дорисовать" на фотографии то, чего на ней нет :) ).
   Также эта диагностическая утилита определяет наличие вспышек при камерах и показывает эту информацию в таблице. Эта возможность может быть интересна в связи с тем, что известны случаи, когда в некоторых смартфонах вспышка для фронтальной камеры была "муляжом", т.е. реально не работала. Эта утилита в таких случаях показывает пользователю, что реально там вспышки нет, и не надо мучиться и пытаться заставить её работать. :)
   В приведенном примере основная (тыловая) камера - Samsung S5K3P3, имеет разрешение в 16 мегапикселей; фронтальная камера - SuperPix SP8407, разрешение - 8 мегапикселей.

   К сожалению, утилита не всегда может показать модель сенсора, особенно для платформ Qualcomm (qcom). В некоторых случаях для доступа к соответствующей информации в смартфоне могут потребоваться права ROOT, которые, в свою очередь, не для всех моделей удается получить. Также надо иметь в виду, что при получении прав ROOT могут отказаться работать системы бесконтактных платежей - с их точки зрения, это - нарушение правил безопасности.

    Правда, в этом случае утилита может показать список совместимых камер, а уже из этого списка есть шанс методом сличения параметров найти ту, которая и применена.

 Другие производители:
 GalaxyCore (Китай)

  Ваш Доктор.
 22 февраля 2017 г., с дополнениями от 27 января 2018 г.

 


                Порекомендуйте эту страницу друзьям и одноклассникам                      

 

   Другие статьи цикла "Как устроен смартфон":

 - Фотосъемка в режиме HDR (High Dynamic Range) в смартфоне. Что это такое, какая польза и когда можно использовать?

 - Вскрытие (разборка) камеры смартфона. Устройство камеры смартфона (мобильного телефона).

 - Устройство дисплея мобильного телефона (смартфона) и планшета. Устройство жидкокристаллического экрана. Типы дисплеев, их отличия.

 - Навигация (GPS, ГЛОНАСС и др.) в смартфонах и планшетах. Источники ошибок. Методы тестирования.

 - Что такое USB OTG в смартфоне и планшете?

 - Вскрытие (разборка) литий-ионного аккумулятора.


   В комментариях запрещены, как обычно, флуд, флейм и оффтопик.
  Также запрещено нарушать общепринятые нормы и правила поведения, в том числе размещать экстремистские призывы, оскорбления, клевету, нецензурные выражения, пропагандировать или одобрять противозаконные действия. Соблюдение законов - в Ваших же интересах!

   Комментарии вКонтакте:

 

  
     
  Доктора! (Администрация сайта - контакты и информация)
  Группа SmartPuls.Ru  Контакте - анонсы обзоров, актуальные события и мысли о них